飞行仿真之刚体六自由度方程

在飞行仿真中,获取飞机的位姿是基本要求。将飞行器视为刚体,根据牛顿第二定律和动量矩定理,即可推导出飞机的质心运动方程和飞机绕质心转动的动力学方程,即刚体的六自由度方程。下面即从《航空飞行器飞行动力学》中摘抄刚体六自由度方程的推导过程。

飞行器质心运动方程

根据牛顿第二定理:

$$m\frac{dV}{dt}=F \tag{1}$$

式中$m$为飞行器质量,$V$为飞行器飞行速度矢量,$F$为作用于质心处外力的合力矢量。

具体研究飞行器质心运动规律时,工程上常建立投影正在一动坐标系的标量方程,并认为大气时静止的。

一般动坐标系中质心动力学方程

取原点位于飞行器质心的一动坐标系$Oxyz$,它相对惯性坐标系$O_gx_gy_gz_g$有一转动角速度$w$。质心的绝对速度为$V$,如图1所示。

动系相对于惯性坐标系的关系

图1 动系相对于惯性坐标系的关系

将速度$V$和角速度$w$分别在动坐标系上投影,则有

$$V=V_xi+V_yj+V_zk \tag{2}$$
$$w=w_xi+w_yj+w_zk \tag{3}$$

式中$i,j,k$为动坐标系$Oxyz$的单位矢量。由于$w$存在,其方向将随时间变化。

将公式$(2)和(3)$带入公式$(1)$,则速度$V$的微分,即质心的绝对加速度为:

$$
\frac{F}{m}=\frac{dV}{dt}=\frac{dV_x}{dt}i+\frac{dV_y}{dt}j+\frac{dV_z}{dt}k+V_x\frac{di}{dt}+V_y\frac{dj}{dt}+V_z\frac{dk}{dt} \tag{4}
$$

式中单位矢量导数$di/dt$是矢量端点$i$的速度,此时矢端曲线是绕$w$旋转的圆,因此:

$$\frac{di}{dt}=w\times i$$
$$\frac{dj}{dt}=w\times y$$
$$\frac{dk}{dt}=w\times z$$

将上述关系代入公式$(4)$,即可知质心的绝对加速度可表示为

$$\frac{F}{m}=\frac{dV}{dt}=\frac{\delta V}{\delta t}+w \times V \tag{5}$$

其中:

$$\frac{\delta V}{\delta t}=\frac{dV_x}{dt}i+\frac{dV_y}{dt}j+\frac{dV_z}{dt}k$$

式(5)中 $\frac{\delta V}{\delta t}$ 为动系角速度 $w=0$ 时的加速度,即相当于观察者站在动坐标系中所看到的质心加速度;$w\times V$为由于存在角速度 $w$ 使 $V$ 相对于动坐标系方向发生变化而产生的加速度;$\frac{dV}{dt}$ 为质心的绝对加速度,即观察者在地面坐标系上所看到的加速度。

同样合力矢量$F$用动坐标系上投影表示为:

$$F=F_xi+F_yj+F_zk$$

于是式(5)在动坐标系$Oxyz$上投影的质心动力学标量方程如下:

$$m(\frac{dV_x}{dt}+V_zw_y-V_yw_z)=F_x$$
$$m(\frac{dV_y}{dt}+V_xw_z-V_zw_x)=F_y$$
$$m(\frac{dV_z}{dt}+V_yw_x-V_xw_y)=F_z$$

上述方程组适用于任何动坐标系。

飞行器绕质心的动力学方程

根据动量矩定理,飞行器绕质心的转动运动可表示为:

$$M=\frac{dh}{dt} \tag{6}$$

式中$h$为飞行器对坐标系原点的动量矩;$M$为作用在飞行器上的外力对原点的合力矩。

对质心的动量矩

图2 对质心的动量矩

根据动量矩定义,飞行器上任意微元质量为dm,对坐标系原点的动量矩为:

$$\Delta h=r\times V dm$$

式中$r$为微元质量到坐标系原点的矢径;$V$为该微元质量的速度矢量,则

$$V=V_o+w\times r$$

式中$V_o$为坐标系原点速度(如坐标原点取为飞行器质心,则为质心速度);$w$为坐标系转动角速度。

于是飞行器的总动量矩可积分得出

$$h=\int r\times V dm=\int r dm \times V_o +\int r \times (w \times r) dm$$

取坐标系原点为质心时,有

$$\int r dm=0$$

飞行器动量矩简化为

$$h=\int r \times (w\times r) dm \tag{7}$$

上式表明,飞行器的动量矩只取决于转动产生的速度部分,而与质心运动速度$V_o$无关。矢径$r$和角速度$w$用坐标系中投影分量表示为:

$$r=xi+yj+zk$$
$$w=w_xi+w_yj+w_zk$$

将上述关系式代入式$(7)$,经整理得:

$$h_x=w_xI_x-w_yI_{xy}-w_zI_{zx}$$
$$h_y=w_yI_y-w_xI_{xy}-w_zI_{yz}$$
$$h_z=w_zI_z-w_xI_{zx}-w_yI_{yz}$$

式中$I_x$,$I_y$,$I_z$分别为飞行器对$O_x$轴,$O_y$轴,$O_z$轴地惯性矩,分别为:

$$I_x=\int (y^2+z^2) dm$$
$$I_y=\int (x^2+z^2) dm$$
$$I_z=\int (x^2+y^2) dm$$

而$I_{xy}$, $I_{yz}$, $I_{zx}$ 则为对 $O_x$ 轴与 $O_y$ 轴,$O_y$ 轴与 $O_z$ 轴,$O_z$ 轴与 $O_x$ 轴的惯性积,分别为:

$$I_{xy}=\int xy dm$$
$$I_{yz}=\int yz dm$$
$$I_{zx}=\int zx dm$$

一般动坐标系中绕质心转动动力学方程

具体研究飞行器绕质心转动规律时,矢量形式的式$(6)$使用不便。工程习惯上将其投影在一动坐标系上建成方程的标量形式。此时动坐标系在空中以$w$转动,类同于加速度$\frac{dV}{dt}$,动量矩可以表示为:

$$M=\frac{dh}{dt}=\frac{\delta h}{\delta t}+w\times h$$

类似一般动坐标系中质心动力学方程的推导,最终可得转动运动方程的标量形式为:

$$\frac{dh_x}{dt}+h_zw_y-h_yw_z=M_x$$
$$\frac{dh_y}{dt}+h_xw_z-h_zw_x=M_y$$
$$\frac{dh_z}{dt}+h_yw_x-h_xw_y=M_z$$

参考文献

  1. 方振平,陈万春,张曙光. 航空飞行器飞行动力学[M]. 2015.
  2. 旋转变换(一)旋转矩阵,by csxiaoshui.
  3. 飞行仿真–3.刚体六自由度方程、变换矩阵与四元数,by WFYX.
  4. 判断三维坐标系旋转正方向的简单方法,by Wonderffee.
  5. (番外)姿态与旋转矩阵(I),by Tam Alex.
  6. 一点关于机器人学和计算机视觉中的坐标变换的理解,by Kissrabbit.
  7. 飞机是怎么飞起来的,by J Pan.
  8. 如何获得飞机运动方程,by J Pan.
  9. 【自动控制原理】1.传递函数,by 李寒潭.
  10. 空空导弹尾部的齿轮有什么用?,by 不沉俾斯麦.
  11. 导弹制导原理第4章,by 张庆振.
  12. 飞行原理术语解析,by 刘斯宁.
  13. 空气动力学术语解析,by 刘斯宁.